Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 36: 168-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38463551

RESUMO

Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 µm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.

2.
Int J Biol Macromol ; 244: 125201, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37270140

RESUMO

In this study, we developed a well-printable biomaterial ink for 3D printing of shape-maintaining hydrogel scaffolds. The hydrogel base comprised tyramine-modified hyaluronic acid (HA-Tyr) and gelatin methacrylate (GelMA) and was dually cross-linked. Using the Box-Behnken design, we explored how varying the ink composition affected fiber formation and shape preservation. By adjusting the polymer ratios, we produced a stable hydrogel with varying responses, from a viscous liquid to a thick gel, and optimized 3D scaffolds that were structurally stable both during and after printing, offering precision and flexibility. Our ink exhibited shear-thinning behavior and high swelling capacity, as well as ECM-like characteristics and biocompatibility, making it an ideal candidate for soft tissues matrices with storage modulus of around 300 Pa. Animal trials and CAM assays confirmed its biocompatibility and integration with host tissue.


Assuntos
Ácido Hialurônico , Engenharia Tecidual , Animais , Fenol , Hidrogéis , Gelatina , Fenóis , Impressão Tridimensional , Alicerces Teciduais
3.
Carbohydr Polym ; 295: 119844, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988997

RESUMO

Enzyme-mediated crosslinked hydrogels as soft materials for biomedical applications have gained considerable attention. In this article, we studied the effect of tannic acid post-treatment on adhesiveness and physiochemical properties of an enzymatically crosslinked hydrogel based on chitosan and alginate. The hydrogels were soaked in TA solution at different pH (3, 5.5, 7.4, and 9) and concentrations (1, 10, 20, 30 TA wt%). Increasing the TA concentration to 30 TA wt% and pH (up to 7.4) increased the TA loading and TA release. TA post-treatment reduced the swelling ratio and degradation rate of the hydrogels due to the formation of hydrogen bonding between TA molecules, chitosan, and alginate chains resulted in higher crosslinking density. TA-reinforced hydrogels with 30 % TA (Gel-TA 30) exhibited significantly high adhesive strength (up to 18 kPa), storage modulus (40 kPa), and antioxidant activity (>96 %), antibacterial activity, and proliferation and viability of 3 T3-L1 fibroblast cells.


Assuntos
Quitosana , Hidrogéis , Alginatos/química , Antioxidantes/química , Quitosana/química , Hidrogéis/química , Hidrogéis/farmacologia , Taninos/química
4.
Biotechnol Adv ; 59: 107988, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35605757

RESUMO

As a source of several valuable products, photosynthetic microorganisms (microalgae and cyanobacteria) have many applications in biomedical, electrochemical, and urban-space fields. Microalgal and cyanobacterial (photoautotrophs) implementations have been the subject matter of several reviews, which mainly focused on exploring effective methods of their harvesting, optimal cultivation conditions, energy conversion efficiency, and new strategies for microalgal health-promoting compound recovery. This review highlights recent investigations into biomedical, urban, environmental, and electrical engineering microalgae and cyanobacteria applications over the last seven years. A brief historical outline of advances in photoautotroph-based technologies is presented prior to an exploration of the important role of these microorganisms in combating global warming and food and energy insecurity. Special attention is given to the photosynthetic oxygen production of algae and the possibility of treating hypoxia-associated diseases such as cancer or tissue injuries. Photoautotroph applications in microrobotics, drug delivery and wound healing systems, biosensors, and bioelectronics are also introduced and discussed. Finally, we present emerging fabrication techniques, such as additive manufacturing, that unleash the full potential of autotrophic, self-sufficient microorganisms at both the micro- and macroscales. This review constitutes an original contribution to photoautotroph biotechnology and is thought to be impactful in determining the future roles of microalgae and cyanobacteria in medical, electrical, or urban space applications.


Assuntos
Cianobactérias , Microalgas , Neoplasias , Biotecnologia/métodos , Humanos , Fotossíntese
5.
Gels ; 8(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35323292

RESUMO

Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.

6.
Bioengineering (Basel) ; 8(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201362

RESUMO

Thermoresponsive hydrogel-based wound dressings with an incorporated antimicrobial agent can be fabricated employing 3D printing technology. A novel printable ink containing poly(N-isopropylacrylamide) (PNIPAAm) precursors, sodium alginate (ALG), methylcellulose (MC) that is laden with a mixture of octenidine dihydrochloride and 2-phenoxyethanol (Octenisept®, OCT) possess accurate printability and shape fidelity. This study also provides the protocol of ink's use for the 3D printing of hydrogel scaffolds. The hydrogel's physicochemical properties and drug release profiles from the hydrogel specimens to the external solution have been determined at two temperatures (20 and 37 °C). The release test showed a sustained OCT delivery into ultrapure water and the PBS solution. The temperature-responsive hydrogel exhibited antimicrobial activity against Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa and demonstrated non-cytotoxicity towards fibroblasts. The thermoresponsive behavior along with biocompatibility, antimicrobial activity, and controlled drug release make this hydrogel a promising class of materials for wound dressing applications.

7.
Sci Total Environ ; 791: 148266, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119800

RESUMO

The concept of water reuse was proposed more than two decades ago in regions that suffered from water scarcity or relied on unpredictable water supplies. Since then, climate change, a rapidly growing global urban population, and environmental pollution have impacted sustainable water resources, driving a rise in demand for efficient wastewater reclamation technologies. According to the new Circular Economy Action Plan established by the EU, most activities that are undertaken as part of the wastewater treatment process should primarily concern the search for new technologies that use wastewater as a source of water and nutrients. This article proposes a new approach of secondary effluent (SE) management to recover the valuable components of wastewater for a variety of purposes, beginning with the water itself and followed by nutrients. With this objective in mind, we reclaimed SE in an integrated 3-stage pilot-scale membrane process (micro/ultrafiltration, nanofiltration and reverse osmosis). The effect of the process inlet pressure and flow configuration (cross-flow and dead-end filtration), as well as the type of membrane, on the efficiency of the process and water composition was investigated. In this study, microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) are not only pre-treatment processes reverse osmosis (RO) but also produce water for various purposes. This technology allowed the production of water for several types of applications. These uses include (a) industrial processes as a cooling medium, (b) urban non-potable applications (e.g., irrigation with reclaimed water and microelements), (c) potable water supplies, and (d) groundwater remediation. The classification of proper use was made based on standards, regulations, and the available literature. The conducted research demonstrated the versatility of the proposed technology with regard to water reclamation for various non-exclusive applications. Additionally, the cost-effectiveness of the implementation of the presented 3-stage-membrane technology was calculated.


Assuntos
Água Potável , Purificação da Água , Filtração , Membranas Artificiais , Nutrientes , Osmose , Tecnologia , Eliminação de Resíduos Líquidos , Águas Residuárias
8.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477502

RESUMO

Shortcomings related to the treatment of bone diseases and consequent tissue regeneration such as transplants have been addressed to some extent by tissue engineering and regenerative medicine. Tissue engineering has promoted structures that can simulate the extracellular matrix and are capable of guiding natural bone repair using signaling molecules to promote osteoinduction and angiogenesis essential in the formation of new bone tissues. Although recent studies on developing novel growth factor delivery systems for bone repair have attracted great attention, taking into account the complexity of the extracellular matrix, scaffolding and growth factors should not be explored independently. Consequently, systems that combine both concepts have great potential to promote the effectiveness of bone regeneration methods. In this review, recent developments in bone regeneration that simultaneously consider scaffolding and growth factors are covered in detail. The main emphasis in this overview is on delivery strategies that employ polymer-based scaffolds for spatiotemporal-controlled delivery of both single and multiple growth factors in bone-regeneration approaches. From clinical applications to creating alternative structural materials, bone tissue engineering has been advancing constantly, and it is relevant to regularly update related topics.


Assuntos
Regeneração Óssea/genética , Osso e Ossos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Engenharia Tecidual , Animais , Materiais Biocompatíveis/uso terapêutico , Osso e Ossos/patologia , Matriz Extracelular/genética , Técnicas de Transferência de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Medicina Regenerativa/tendências , Alicerces Teciduais/química
9.
Bioresour Bioprocess ; 8(1): 114, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38650270

RESUMO

This study aims to assess kinetic modelling of the solid-liquid extraction process of total polyphenolic compounds (TPC) from apple pomace (AP). In this regard, we investigated the effects of temperature and solvent (i.e. water, ethanol, and acetone) on TPC extraction over various periods. The highest TPC yield of 11.1 ± 0.49 mg gallic acid equivalent (GAE)/g db (dry basis) was achieved with a mixture of 65% acetone-35% water (v/v) at 60 °C. The kinetics of the solvent-based TPC extraction processes were assessed via first-order and second-order kinetic models, with an associated investigation of the kinetic parameters and rate constants, saturation concentrations, and activation energies. The second-order kinetic model was sufficient to describe the extraction mechanism of TPC from AP. This study provides an understanding of the mass transfer mechanism involved in the polyphenolic compound extraction process, thus facilitating future large-scale design, optimization, and process control to valorize pomace waste.

10.
Biosens Bioelectron ; 168: 112568, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32905929

RESUMO

Biofabrication techniques such as microlithography and 3-D bioprinting have emerged in recent years as technologies capable of rendering complex, biocompatible constructs for biosensors, tissue and regenerative engineering and bioelectronics. While instruments and processes have been the subject of immense advancement, multifunctional bioinks have received less attention. A novel photocrosslinkable, hybrid bioactive and inherently conductive bioink formed from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanomaterials within poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-EGMA) was used to render complex hydrogel constructs through microlithographic fabrication and 3-D printing. Constructs were directly compared through established metrics of acuity and fidelity, using side-by-side comparison of microarray grids, triangles incorporating angles 15-90°, and a multi-ink hydrogel disk array. Compositional variation from 0.01 to 1.00 wt% PEDOT:PSS produced hydrogels of varying and tunable electrical and electrochemical properties, while maintaining similar rheological properties (up to 0.50 wt% PEDOT:PSS). Furthermore, hydrogel membrane resistances extracted from equivalent circuit modeling of electrical impedance spectroscopy data varied only according to the included wt% of PEDOT:PSS and were agnostic of fabrication method. An in-silico variable frequency active low-pass filter was developed using a microlithographically fabricated Individually Addressable Microband Electrode (IAME) as the filtering capacitor, wherein 3-D printed lines of varying wt% of PEDOT:PSS hydrogels were shown to alter the cutoff frequency of the analog filter, indicating a potential use as tunable 3-D printed organic electronic analog filtering elements for biosensors. Bioinks of different PEDOT:PSS (0.0, 0.1, and 0.5 wt%) manufactured into hydrogel disks using the two methods were shown to yield similarly cytocompatible substrates for attachment and differentiation of PC-12 neural progenitor cells.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros
11.
J Transl Med ; 18(1): 348, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928219

RESUMO

BACKGROUND: To introduce the Hemorrhage Intensive Severity and Survivability (HISS) score, based on the fusion of multi-biomarker data; glucose, lactate, pH, potassium, and oxygen tension, to serve as a patient-specific attribute in hemorrhagic trauma. MATERIALS AND METHODS: One hundred instances of Sensible Fictitious Rationalized Patient (SFRP) data were synthetically generated and the HISS score assigned by five clinically active physician experts (100 [5]). The HISS score stratifies the criticality of the trauma patient as; low(0), guarded(1), elevated(2), high(3) and severe(4). Standard classifier algorithms; linear support vector machine (SVM-L), multi-class ensemble bagged decision tree (EBDT), artificial neural network with bayesian regularization (ANN:BR) and possibility rule-based using function approximation (PRBF) were evaluated for their potential to similarly classify and predict a HISS score. RESULTS: SVM-L, EBDT, ANN:BR and PRBF generated score predictions with testing accuracies (majority vote) corresponding to 0.91 ± 0.06, 0.93 ± 0.04, 0.92 ± 0.07, and 0.92 ± 0.03, respectively, with no statistically significant difference (p > 0.05). Targeted accuracies of 0.99 and 0.999 could be achieved with SFRP data size and clinical expert scores of 147[7](0.99) and 154[9](0.999), respectively. CONCLUSIONS: The predictions of the data-driven model in conjunction with an adjunct multi-analyte biosensor intended for point-of-care continual monitoring of trauma patients, can aid in patient stratification and triage decision-making.


Assuntos
Algoritmos , Redes Neurais de Computação , Teorema de Bayes , Biomarcadores , Hemorragia , Humanos
12.
J Environ Manage ; 241: 198-210, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004997

RESUMO

Extraterrestrial colonization is a certain eventuality that would be nearly impossible without the efficient and robust resources of recovering life support systems. Knowledge of inputs is necessary for the development of such systems, especially for the first stages of design such as mass balancing and the selection of unitary processes. One of the most important inputs is blackwater, as this stream is the most polluted and rich in resources and needs to be treated and reused. In the paper, data from space missions and terrestrial sources concerning the flows, concentrations and loads in urine and feces are compared and analyzed. It is shown that results obtained during space missions are scarce and for many parameters no information is available. It is also shown how gravity influences the elemental composition of urine and feces. In contrast, data from terrestrial sources are abundant. The presented analysis shows that data from space and terrestrial systems are convergent for many parameters and that the available terrestrial data for those parameters can be used for mass balancing and unitary process selection without a high risk.


Assuntos
Sistemas de Manutenção da Vida , Águas Residuárias , Fezes , Rios , Voo Espacial
13.
ACS Biomater Sci Eng ; 5(10): 4994-5004, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455247

RESUMO

Controlling the biotechnical properties of synthetic hydrogels allows their application in a wide range of biomedical fields. Cross-linker concentration and monomer mole ratio of poly(2-hydroxyethylmethacrylate-co-N-(2-hydroxypropyl) methacrylamide) [poly(HEMA-co-HPMA)]-based hydrogels were used to control the degree of hydration and water distribution within constructs. Cross-linker concentrations corresponding to 0.1, 0.5, 1.0, and 3.0 mol % tetraethylene glycol (TEGDA) with HEMA/HPMA mole ratios of 1:0 and 4:1, and poly(HEMA-co-HPMA) of cross-linker concentration corresponding to 1.0 mol % TEGDA with a HEMA/HPMA ratio of 1:1 were investigated for their degree of hydration, water distribution, and corresponding physiochemical and mechanical properties. Copolymerization of HEMA and HPMA was confirmed by Fourier-transform infrared spectroscopy. Both cross-linker concentration and chemical composition (HEMA/HPMA) systematically changed the water content and free/bound water distribution in the polymer, which resulted in different biochemical and transport properties. The addition of 20% HPMA (poly(HEMA-co-HPMA) (4:1)) increased total hydration (25%) and glass-transition temperature (9%) and decreased elastic modulus (31%) and nonfreezable bound water (33%) of the hydrogel. Increasing cross-linker concentration resulted in a stiffer hydrogel with less total water but larger nonfreezable water content. Evaluation of poly(HEMA-co-HPMA) (1:1) revealed that further increase of HPMA content increased the degree of hydration by 25% and decreased nonfreezable water content and elastic modulus by 33 and 16%, respectively, compared to that of poly(HEMA-co-HPMA) (4:1). The hydrogel correspondingly had a higher void fraction and rougher freeze-fractured surface. The diffusion-related processes depended more on water distribution within the hydrogel. The poly(HEMA) showed the fastest swelling kinetics with a concomitant burst release profile of fluorescein isothiocyanate-dextran (a drug surrogate), while the compositions containing HPMA showed a sustained release pattern. The biotechnical properties are illustrative examples of key properties that are influenced by the water distribution rather than the absolute water content of hydrogels.

14.
Food Chem ; 258: 63-70, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29655755

RESUMO

The first article of a two-article series presents pervaporation (PV) of volatile aroma compounds from fruit juice hydrolates (plum, apple, blackcurrant and cherry). The purpose of this research was to evaluate the effectiveness of fruit juice hydrolates separation on a laboratory scale (inert gas flow pervaporation system) and semi-technical (vacuum pervaporation system) by means of pervaporation. To create precise matrices for hydrolates before and after pervaporation for each of the separated systems, solid phase microextraction (SPME) technique and the gas chromatography-mass spectrometry (GC-MS) was applied. Sensory analysis confirmed improvement of aroma note of concentrated permeates as compared to feed hydrolates solutions. The results indicated that pervaporation may be applied in condensing aromatic water or fruit juice hydrolate, which may significantly enhance product quality and lengthen shelf life.


Assuntos
Sucos de Frutas e Vegetais/análise , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Malus/química , Malus/metabolismo , Prunus domestica/química , Prunus domestica/metabolismo , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
15.
Bioresour Technol ; 160: 150-60, 2014 05.
Artigo em Inglês | MEDLINE | ID: mdl-24495798

RESUMO

A review on the application of response surface methodology (RSM) and artificial neural networks (ANN) in biosorption modelling and optimization is presented. The theoretical background of the discussed methods with the application procedure is explained. The paper describes most frequently used experimental designs, concerning their limitations and typical applications. The paper also presents ways to determine the accuracy and the significance of model fitting for both methodologies described herein. Furthermore, recent references on biosorption modelling and optimization with the use of RSM and the ANN approach are shown. Special attention was paid to the selection of factors and responses, as well as to statistical analysis of the modelling results.


Assuntos
Biomassa , Biotecnologia/métodos , Modelos Teóricos , Redes Neurais de Computação , Adsorção
16.
Bioresour Technol ; 160: 161-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24507580

RESUMO

In the present work, eggshells were used to remove a dye (malachite green) from wastewater. The study was focused on identification and describing the binding mechanism of the dye by eggshells in a biosorption process optimized by Response Surface Methodology based on the Box-Behnken Design. The mechanism of biosorption was determined by characterization of the biosorbent before and after biosorption using scanning electron microscopy, X-ray diffraction analysis, the Brunauer-Emmett-Teller isotherm method, Fourier transform infrared spectroscopy. The second-order polynomial equation and 3D response surface plots were used to quantitatively determine the relationships between dependent and independent variables. The obtained results suggested the mechanism of wastewater treatment that included physical adsorption, alkaline fading phenomenon and microprecipitation. The results of the present study showed that waste eggshells have the potential to be used as an inexpensive but effective biosorbent useful in wastewater treatment.


Assuntos
Biomassa , Casca de Ovo/química , Recuperação e Remediação Ambiental/métodos , Corantes de Rosanilina/isolamento & purificação , Adsorção , Análise de Variância , Animais , Biodegradação Ambiental
17.
J Agric Food Chem ; 61(35): 8436-43, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23815805

RESUMO

The aim of the present investigation was to enrich the mineral content of soybean meal with essential chromium and copper metal ions by a biosorption technique in a fixed-bed column. The values of column parameters were determined at various process conditions: pH, temperature, flow rate, and concentration of the feed solution; mass and size of the particles of the bed to determine the breakthrough curves. Biosorption efficiency at optimal conditions (pH 5.0, temperature = 20 °C, Cr(3+) concentration = 200 mg/L, flow rate = 10 mL/min, and sorbent mass = 40 g) was 71.4%. Maximum uptake for Cr(III) and Cu(II) obtained in column was around 15.3 and 12.3 mg/g, respectively. The model constants obtained in this study can be used for design pilot plant systems. Soybean enriched with microelements by biosorption can be considered as biological carrier of microelements and therefore used as the component of livestock feed.


Assuntos
Ração Animal/análise , Manipulação de Alimentos/métodos , Alimentos Fortificados/análise , Minerais/análise , Alimentos de Soja/análise , Adsorção , Animais , Cromo , Cobre , Manipulação de Alimentos/instrumentação , Concentração de Íons de Hidrogênio , Soluções , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...